Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation.

Meningiomas frequently display activation of the PI3K/AKT/mTOR pathway, leading to elevated levels of phospho-eukaryotic translation initiation factor 4E binding proteins, which enhances protein synthesis; however, it is not known whether inhibition of protein translation is an effective treatment option for meningiomas. We found that human meningiomas expressed high levels of the three components of the eukaryotic initiation factor 4F (eIF4F) translation initiation complex, eIF4A, eIF4E, and eIF4G. The expression of eIF4A and eIF4E was important in sustaining the growth of NF2-deficient benign meningioma Ben-Men-1 cells, as shRNA-mediated knockdown of these proteins strongly reduced cell proliferation. Among a series of 23 natural compounds evaluated, silvestrol, which inhibits eIF4A, was identified as being the most growth inhibitory in both primary meningioma and Ben-Men-1 cells. Silvestrol treatment of meningioma cells prominently induced G2 /M arrest. Consistently, silvestrol significantly decreased the amounts of cyclins D1, E1, A, and B, PCNA, and Aurora A. In addition, total and phosphorylated AKT, ERK, and FAK, which have been shown to be important drivers for meningioma cell proliferation, were markedly lower in silvestrol-treated Ben-Men-1 cells. Our findings suggest that inhibiting protein translation could be a potential treatment for meningiomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app