Add like
Add dislike
Add to saved papers

An RNA Aptamer Capable of Forming a Hydrogel by Self-Assembly.

Biomacromolecules 2017 July 11
Hydrogels are supramolecular assemblies with both solute transport properties like liquids and mechanical properties like elastomers. To date, every type of biomolecules except ribonucleic acid (RNA), is capable of forming a hydrogel. Here, we report an RNA that forms a hydrogel by self-assembly. This RNA is originally identified by systematic evolution of ligands by exponential enrichment (SELEX) to enhance the activity of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors as a potential RNA drug for the treatment of cognitive disorders. The RNA hydrogel exhibits an elastic modulus plateau on the order of 102 Pa and shows dynamic RNA chain interactions with relaxation behaviors similar to living wormlike micellar solutions. Small-angle X-ray scattering and cryogenic electron microscopy characterization support the RNA network structures. By sequence mutation and rheological measurements, we reveal two key sequence motifs in the RNA responsible for intermolecular recognition and the formation of a polymer network by self-assembly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app