JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

PCL/PHBV blended three dimensional scaffolds fabricated by fused deposition modeling and responses of chondrocytes to the scaffolds.

In this study, poly(ε-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PCL/PHBV) blended porous scaffolds were fabricated by fused deposition modeling (FDM). PCL/PHBV filaments, initially prepared at different weight ratios, that is, 100/0, 75/25, 50/50, and 25/75, were fabricated by the lay-down pattern of 0/90/45/135° to obtain scaffolds with dimension of 6.0 × 6.0 × 2.5 mm3 and average filament diameters and channel sizes in the ranges of 370-390 µm and 190-210 µm, respectively. To enhance the surface hydrophilicity of the materials, the scaffolds were subsequently subjected to a low pressure oxygen plasma treatment. The untreated and plasma-treated scaffolds were comparatively characterized, in terms of surface properties, mechanical strength, and biological properties. From SEM, AFM, water contact angle, and XPS results, the surface roughness, wettability, and hydrophilicity of the blended scaffolds were found to be enhanced after plasma treatment, while the compressive strength of the scaffolds was scarcely changed. It was, however, found to increase with an increasing content of PHBV incorporated. The porcine chondrocytes exhibited higher proliferative capacity and chondrogenic potential when being cultured on the scaffolds with greater PHBV contents, especially when they were plasma-treated. The PCL/PHBV scaffolds were proven to possess good physical, mechanical, and biological properties that could be appropriately used in articular cartilage regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1141-1150, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app