Add like
Add dislike
Add to saved papers

Salt-induced cluster formation of gold nanoparticles followed by stopped-flow SAXS, DLS and extinction spectroscopy.

In this work we investigate the salt-induced cluster formation of monodisperse, spherical gold nanoparticles possessing negative surface charge. Time dependent dynamic light scattering was used to determine the critical coagulation concentration and to study the kinetics of cluster growth. Cryo-TEM as well as small angle X-ray scattering allowed to obtain insights into the cluster morphology at various salt concentrations. The time dependent cluster growth was monitored by stopped-flow small angle X-ray scattering experiments and UV-Visible extinction measurements simultaneously. Our results reveal the transition from reaction limited cluster aggregation (RLCA) at low salt concentrations to diffusion limited cluster aggregation (DLCA) at high salt concentrations. We were able to correlate changes of the plasmon resonance position of the gold nanoparticles to the cluster size. By comparison to theoretical calculations using Mie theory, we found indication that stronger resonance shifts during cluster growth can be related to smaller inter-particle spacings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app