CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Renal energy excretion of horses depends on renal hippuric acid and nitrogen excretion.

The prediction of renal energy excretion is crucial in a metabolizable energy system for horses. Phenolic acids from forage cell walls may affect renal energy losses by increasing hippuric acid excretion. Therefore, the relationships were investigated between renal energy, nitrogen (N) and hippuric acid excretion of four adult ponies (230-384 kg body weight (BW)) consuming diets based on fresh grass, grass silage, grass cobs (heat-dried, finely chopped, pressed grass), alfalfa hay, straw, extruded straw and soybean meal. Feed intake was measured; urine and faeces were quantitatively collected for three days. Feed was analysed for crude nutrients, gross energy, amino acids and neutral-detergent-insoluble crude protein (CP); faeces were analysed for crude nutrients and cross energy; urine was analysed for N, hippuric acid, creatinine and gross energy. Renal energy excretion (y; kJ/kg BW0.75 ) correlated with renal N excretion (x1 ; g/kg BW0.75 ) and renal hippuric acid excretion (x2 ; g/kg BW0.75 ): y = 14.4 + 30.2x1 +20.7x2 (r = .95; n = 30; p < .05). Renal hippuric acid excretion was highest after intake of fresh grass and lowest after intake of soybean meal. The ratio of hippuric acid to creatinine in urine and the excretion of hippuric acid per gram of dry matter intake was significantly higher for fresh grass than for all other rations. There was no relationship between aromatic amino acid intake and renal hippuric acid excretion. The results of the present study and literature data suggest that feed can be categorized into four groups with regard to the energy losses per gram CP intake: (i) protein supplements (e.g., soybean meal): 4.2-4.9 kJ/g CP intake (ii) alfalfa hay, grains, dried sugar beet pulp: 6.4 kJ/g CP intake, (iii) hay, preserved grass products, straw: 5.2-12.3 kJ/g CP intake (mean 8) and (iv) fresh grass. For group (iii) a negative relationship was observed between renal energy losses per gram of CP and the content of CP or neutral-detergent-insoluble CP in dry matter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app