Add like
Add dislike
Add to saved papers

Metabolism of novel opioid agonists U-47700 and U-49900 using human liver microsomes with confirmation in authentic urine specimens from drug users.

Recently, the number of adverse events, including death, involving novel opioids has continued to increase, providing additional and sustained challenges for forensic and medical communities. Identification of emerging novel opioids can be challenging, compounded by detection windows and unknown metabolic profiles. In this study, human liver microsomes were used for the generation of in vitro metabolic profiles of U-47700 and U-49900. Generated metabolites were analyzed via a SCIEX TripleTOF® 5600+ quadrupole time-of-flight mass spectrometer and resulting data files were processing using MetabolitePilot™. Characterized metabolites were verified in vivo by analysis of authentic human urine specimens collected after analytically confirmed cases of overdose involving U-47700 or U-49900. In total, four metabolites were identified and present in urine specimens for U-47700, and five metabolites for U-49900. N-Desmethyl-U-47700 was determined to be the primary metabolite of U-47700. Parent U-47700 was identified in all urine specimens. N-Desmethyl-U-47700 and N,N-didesmethyl-U-47700 were structurally confirmed for the first time during this study following acquisition of standard reference material. N-Desethyl-U-49900 was determined to be the primary metabolite of U-49900 following microsomal incubations, while N,N-didesethyl-N-desmethyl-U-49900 was the most abundant in a urine specimen. Similarities in metabolic transformation were identified between U-47700 and U-49900, resulting in a common metabolite and isomeric species. These phenomena should be considered in cases involving U-47700 or U-49900. This study is the first to map the metabolic profiles of U-47700 and U-49900 using human liver microsomes, as well as the first to report any literature involving U-49900 and analysis of case specimens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app