JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mitochondria-targeted antioxidant MitoQ reduced renal damage caused by ischemia-reperfusion injury in rodent kidneys: Longitudinal observations of T 2 -weighted imaging and dynamic contrast-enhanced MRI.

PURPOSE: To investigate the effect of mitochondria-targeted antioxidant MitoQ in reducing the severity of renal ischemia-reperfusion injury (IRI) in rats using T2 -weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI).

METHODS: Ischemia-reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T2 -weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate kcl was derived from DCE-MRI. Histopathology was evaluated after the final MRI examination.

RESULTS: The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). Kcl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001).

CONCLUSIONS: These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T2 -weighted imaging and DCE-MRI. Magn Reson Med 79:1559-1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app