Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype.

Diabetologia 2017 September
AIMS/HYPOTHESIS: Recent clinical studies indicate that glucagon-like peptide-1 (GLP-1) analogues prevent acute cardiovascular events in type 2 diabetes mellitus but their mechanisms remain unknown. In the present study, the impact of GLP-1 analogues and their potential underlying molecular mechanisms in insulin resistance and atherosclerosis are investigated.

METHODS: Atherosclerosis development was evaluated in Apoe -/- Irs2 +/- mice, a mouse model of insulin resistance, the metabolic syndrome and atherosclerosis, treated with the GLP-1 analogues lixisenatide or liraglutide. In addition, studies in Apoe -/- Irs2 +/- mice and mouse-derived macrophages treated with lixisenatide were performed to investigate the potential inflammatory intracellular pathways.

RESULTS: Treatment of Apoe -/- Irs2 +/- mice with either lixisenatide or liraglutide improved glucose metabolism and blood pressure but this was independent of body weight loss. Both drugs significantly decreased atheroma plaque size. Compared with vehicle-treated control mice, lixisenatide treatment generated more stable atheromas, with fewer inflammatory infiltrates, reduced necrotic cores and thicker fibrous caps. Lixisenatide-treated mice also displayed diminished IL-6 levels, proinflammatory Ly6Chigh monocytes and activated T cells. In vitro analysis showed that, in macrophages from Apoe -/- Irs2 +/- mice, lixisenatide reduced the secretion of the proinflammatory cytokine IL-6 accompanied by enhanced activation of signal transducer and activator of transcription (STAT) 3, which is a determinant for M2 macrophage differentiation. STAT1 activation, which is essential for M1 phenotype, was also diminished. Furthermore, atheromas from lixisenatide-treated mice showed higher arginase I content and decreased expression of inducible nitric oxide synthase, indicating the prevalence of the M2 phenotype within plaques.

CONCLUSIONS/INTERPRETATION: Lixisenatide decreases atheroma plaque size and instability in Apoe -/- Irs2 +/- mice by reprogramming macrophages towards an M2 phenotype, which leads to reduced inflammation. This study identifies a critical role for this drug in macrophage polarisation inside plaques and provides experimental evidence supporting a novel mechanism of action for GLP-1 analogues in the reduction of cardiovascular risk associated with insulin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app