COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

On the Road to Development of an in Vitro Permeation Test (IVPT) Model to Compare Heat Effects on Transdermal Delivery Systems: Exploratory Studies with Nicotine and Fentanyl.

PURPOSE: At elevated temperatures, the rate of drug release and skin permeation from transdermal delivery systems (TDS) may be higher than at a normal skin temperature. The aim of this study was to compare the effect of heat on the transdermal delivery of two model drugs, nicotine and fentanyl, from matrix-type TDSs with different formulations, using in vitro permeation tests (IVPT).

METHODS: IVPT experiments using pig skin were performed on two nicotine and three fentanyl TDSs. Both continuous and transient heat exposures were investigated by applying heat either for the maximum recommended TDS wear duration or for short duration.

RESULTS: Continuous heat exposure for the two nicotine TDSs resulted in different effects, showing a prolonged heat effect for one product but not the other. The Jmax enhancement ratio due to the continuous heat effect was comparable between the two nicotine TDS, but significantly different (p < 0.05) among the three fentanyl TDSs. The Jmax enhancement ratios due to transient heat exposure were significantly different for the two nicotine TDSs, but not for the three fentanyl TDSs. Furthermore, the transient heat exposure affected the clearance of drug from the skin depot after TDS removal differently for two drugs, with fentanyl exhibiting a longer heat effect.

CONCLUSIONS: This exploratory work suggests that an IVPT study may be able to discriminate differences in transdermal drug delivery when different TDS are exposed to elevated temperatures. However, the clinical significance of IVPT heat effects studies should be further explored by conducting in vivo clinical studies with similar study designs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app