Add like
Add dislike
Add to saved papers

Amplifying the signal of localized surface plasmon resonance sensing for the sensitive detection of Escherichia coli O157:H7.

Scientific Reports 2017 June 13
Gold nanorods (Au NRs) based localized surface plasmon resonance (LSPR) sensors have been widely employed in various fields including biology, environment and food safety detection, but their size- and shape-dependent sensitivity limits their practical applications in sensing and biological detection. In our present work, we proposed an approach to maximally amplify the signal of Au NRs based LSPR sensing by coating an optimized thickness of mesoporous silica onto Au NRs. The plasmonic peaks of Au NRs@SiO2 with different shell thickness showed finely linear response to the change of surrounding refractive index. The optimized thickness of mesoporous silica of Au NRs@SiO2 not only provided high stability for LSPR sensor,but also displayed much higher sensitivity (390 nm/RIU) than values of Au NRs from previous reports. The obtained Au NRs@SiO2 based LSPR sensor was further used in practical application for selectively detection of the E. coli O157:H7, and the detection limit achieved 10 CFU, which is much lower than conventional methods such as electrochemical methods and lateral-flow immunochromatography.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app