Add like
Add dislike
Add to saved papers

Development of a selective agonist for relaxin family peptide receptor 3.

Scientific Reports 2017 June 13
Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled receptors, namely RXFP1-4. Among these receptors, RXFP3 lacks a specific natural or synthetic agonist at present. A previously designed chimeric R3/I5 peptide, consisting of the B-chain of relaxin-3 and the A-chain of INSL5, displays equal activity towards the homologous RXFP3 and RXFP4. To increase its selectivity towards RXFP3, in the present study we conducted extensive mutagenesis around the B-chain C-terminal region of R3/I5. Decreasing or increasing the peptide length around the B23-B25 position dramatically lowered the activation potency of R3/I5 towards both RXFP3 and RXFP4. Substitution of B23Gly with Ala or Ser converted R3/I5 from an efficient agonist to a strong antagonist for RXFP3, but the mutants retained considerable activation potency towards RXFP4. Substitution of B24Gly increased the selectivity of R3/I5 towards RXFP3 over the homologous RXFP4. The best mutant, [G(B24)S]R3/I5, displayed 20-fold higher activation potency towards RXFP3 than towards RXFP4, meanwhile retained full activation potency at RXFP3. Thus, [G(B24)S]R3/I5 is the best RXFP3-selective agonist known to date. It is a valuable tool for investigating the physiological functions of RXFP3, and also a suitable template for developing RXFP3-specific agonists in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app