Add like
Add dislike
Add to saved papers

A human challenge model for respiratory syncytial virus kinetics, the pharmacological effect of a novel fusion inhibitor, and the modelling of symptoms scores.

Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections, and is a major cause of hospital admissions and death in young children. Limited treatments currently exist that can prevent or minimise exacerbation of the disease. The aims of this work were: 1) to develop a population pharmacodynamic model to describe RSV kinetics (RSVK) in nasal lavage, 2) evaluate the impact of an investigational fusion inhibitor, JNJ-53718678, on RSVK, and 3) determine the relationship between RSVK and symptoms scores. The best model to fit the RSVK data was a target-cell limited viral kinetics model previously developed for influenza A infections (Baccam et al., 2006), which included a series of compartments for infected, non-producing and infected, and producing cell populations. The model was adapted to account for longer incubation times seen in RSV, by including 4 additional transit compartments, with the virus elimination rate constant and initial number of target cells fixed to literature values to ensure model parameter identifiability. Between-subject variability was included on the infection rate constant and virus production rate constant. The effect of JNJ-53718678 on RSVK was best described by a non-dose dependent transformation of the infectious virions into a non-infectious state, with a proportional odds model successfully describing symptoms scores, using individual model predicted viral loads as predictor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app