Add like
Add dislike
Add to saved papers

Metabolism of steroidal lactones by the fungus Corynespora cassiicola CBS 161.60 results in a mechanistically unique intramolecular ring-D cyclization resulting in C-14 spiro-lactones.

The fungus Corynespora cassiicola metabolises exogenous steroids in a unique and highly specific manner. Central to this, is the ability of this organism to functionalise substrates (androgens, progestogens) at the highly stereochemically hindered 8β-position of the steroid nucleus. A recent study has identified that 8β-hydroxylation occurs through inverted binding in a 9α-hydroxylase. In order to discern the metabolic fate of more symmetrical molecules, we have investigated the metabolism of a range of steroidal analogues functionalised with ring-D lactones, but differing in their functional group stereochemistry at carbon-3. Remarkably, the 3α-functionalised steroidal lactones underwent a mechanistically unique two step intramolecular cyclisation resulting in the generation of a ring-D spiro-carbolactone. This rapid rearrangement initiated with hydroxylation at carbon 14 followed by transesterification, resulting in ring contraction with formation of a butyrolactone at carbon-14. Remarkably this rearrangement was found to be highly dependent on the stereochemistry at carbon-3, with the β-analogues only undergoing 9α-hydroxylation. The implications of these findings and their mechanistic bases are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app