Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Constitutive and acquired mechanisms of resistance to immune checkpoint blockade in human cancer.

Cancer immunotherapy with monoclonal antibodies directed against regulatory pathways in T lymphocytes has been revolutionizing medical oncology, and the clinical success of monoclonal antibodies targeting either cytotoxic T lymphocyte antigen-4 (CTLA-4) or program death-1 (PD-1) in patients affected by melanoma, Hodgkin's lymphoma, Merkel cell carcinoma, and head and neck, bladder, renal cell or non-small cell lung cancer is way beyond the most optimistic expectation. However, immune checkpoint blockade (ICB) has failed to arrest progression in a consistent amount of patients affected by those tumors, and various histological types, including breast, colon and prostate cancer, are less sensitive to this therapeutic approach. Such clinical findings have fueled massive research efforts in the attempt to identify pre-existing and acquired mechanisms of resistance to ICB. Here we focus on evidences emerging from studies in humans on how tumor cells and the tumor microenvironment contribute to the heterogeneous clinical responses, and we propose strategies stemming from pre-clinical models that might improve clinical outcomes for patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app