JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

ANGPTL1 attenuates colorectal cancer metastasis by up-regulating microRNA-138.

BACKGROUND: Angiopoietin-like protein 1 (ANGPTL1) has been reported to suppress migration and invasion in lung and breast cancer, acting as a novel tumor suppressor candidate. Nevertheless, its effects on colorectal cancer (CRC) remain poorly defined. In this study, we aim to demonstrate the biological function of ANGPTL1 in CRC cells.

METHODS: We explored ANGPTL1 mRNA expression in human CRC tissues and its association with prognosis. CRC cell lines overexpressing ANGPTL1 or with ANGPTL1 knocked down were constructed and analyzed for changes in proliferation, colony formation, migration and invasion. ANGPTL1-regulated microRNAs were analyzed, and microRNA inhibitor and mimics were used to explore the role of microRNA in ANGPTL1-associated biological function.

RESULTS: ANGPTL1 mRNA expression was down-regulated in CRC tissues, and high ANGPTL1 expression predicted better survival in CRC patients. ANGPTL1 overexpression resulted in suppressed migration and invasion in vitro, and it prolonged overall survival in mouse models. By contrast, its down-regulation enhanced migration and invasion of CRC cells. MicroRNA-138 expression was positively correlated with ANGPTL1 mRNA level in CRC tissues and up-regulated by ANGPTL1 in CRC cells. In addition, the microRNA-138 inhibitor or mimics could reverse or promote the ANGPTL1-mediated inhibition of the migratory capacity of CRC cells, respectively.

CONCLUSIONS: This study is the first to demonstrate the biological function of ANGPTL1 in CRC cells. ANGPTL1 expression was down-regulated in CRC tissues and inversely correlated with poor survival. ANGPTL1 repressed migration and invasion of CRC cells, and microRNA-138 was involved in this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app