Add like
Add dislike
Add to saved papers

The exploration of monochromatic near-infrared LED improved anoxygenic photosynthetic bacteria Rhodopseudomonas sp. for wastewater treatment.

The future wastewater treatment requires high-efficiency and energy-saving technology. Anoxygenic photosynthetic bacteria (APB) is deemed as an eco-friendly microorganism, which could be employed in wastewater treatment. Here, monochromatic near-infrared (MNIR) light emitting diode (LED) was used, and three key factors (light quality, light intensity and photoperiod) of it were analyzed by a response surface methodology (RSM) in APB wastewater treatment. The results showed that light quality was the biggest impact factor in APB wastewater treatment, and nearly 58.07% of NH4(+)-N and 70.62% of chemical oxygen demand (COD) could be removed based on 46.4% of that theoretically possible. The light quality's study revealed that APB had the highest NH4(+)-N and COD removal, biomass production, and bacteriochlorophyll a production with 850nm IR LED. Moreover, the application of optimal MNIR LED could not only save energy, but also avoid algae bloom of photo-bioreactors (PBR).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app