Add like
Add dislike
Add to saved papers

Effects of dietary energy and lysine levels on growth performance and carcass yields of Pekin ducks from hatch to 21 days of age.

Poultry Science 2017 September 2
A 2 × 6 factorial experiment, using 2 dietary apparent metabolizable energy (AME) levels (2,750 and 3,050 Kcal/kg) and 6 supplemental lysine (Lys) levels (0, 0.10, 0.20, 0.30, 0.40, and 0.50%), was conducted to study the effects of dietary energy and lysine levels on growth performance and carcass yields of Pekin ducks from hatch to 21 d of age. A total of 576 one-day-old male White Pekin ducks was randomly allotted to 12 dietary treatments, each containing 6 replicate pens with 8 birds per pen. At 21 d of age, body weight gain, feed intake, and feed/gain were measured, and then 2 ducks selected randomly from each pen were slaughtered to evaluate the yields of abdominal fat, breast meat, and leg meat. As a result, birds that were fed basal diets with no Lys supplementation showed growth depression, and significant positive effects of dietary Lys supplementation on body weight gain (P < 0.001), feed intake (P < 0.001), and feed/gain (P = 0.002) were observed as dietary Lys increased gradually among all the groups. In addition, increasing energy levels did not affect overall body weight gain (P > 0.05), but feed intake (P = 0.001) and feed/gain (P = 0.009) decreased significantly between the groups. Dietary Lys levels influenced the yields of breast (P < 0.001) and leg (P = 0.001) meat among all the groups, but dietary energy levels had a significant positive effect only on abdominal fat yield (P = 0.014). The interaction between dietary energy and Lys influenced body weight gain of ducks significantly (P = 0.004). According to the broken-line regression analysis, Lys requirements of Pekin ducks for weight gain at 2,750 and 3,050 Kcal of AME/kg were 0.94 and 0.98%, respectively. It suggested that Lys requirement was higher at 3,050 Kcal of AME/kg than at 2,750 Kcal of AME/kg. Dietary energy content determined feed intake of the ducks, and high-energy diets will require a higher amino acid concentration to compensate for a lower feed intake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app