Clinical Trial
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increased Triacylglycerol Lipase Activity in Adipose Tissue of Lean and Obese Men During Endurance Exercise.

Context: Although there is increasing information on the mechanism of lipolysis in adipose tissue, the effect of exercise on individual factors of lipolysis is less well understood.

Objective: We compared changes in adipose-tissue triacylglycerol lipase activity and gene expression of adipose triacylglycerol lipase (ATGL), hormone-sensitive lipase (HSL), monoacylglycerol lipase, perilipin 1, and comparative gene identification 58 (CGI-58) during exercise between lean and obese men.

Design and Participants: Seven lean and nine obese men cycled for 30 minutes at a heart rate of 130 to 140 beats per minute. At baseline and 5, 10, 20, and 30 minutes of exercise, we sampled subcutaneous adipose tissue for triacylglycerol lipase activity and mRNA determination, and blood for glycerol, nonesterified fatty acid, glucose, lactate, insulin, and catecholamine determination.

Setting: The study was conducted at a university research unit.

Results: Triacylglycerol lipase activity increased at 10 minutes of exercise in the lean men and returned to baseline at 20 and 30 minutes. In the obese men, it was higher than baseline at 10, 20, and 30 minutes and higher than the corresponding values in the lean men at 20 and 30 minutes. No changes in mRNA levels were found during exercise, but the obese men had lower mRNA levels of ATGL, HSL, and CGI-58 compared with the lean men.

Conclusion: Our findings suggest different patterns of lipolytic stimulation during endurance exercise between lean and obese men. Differences in lipolytic rates seem to be due to differences in protein amount or activity, not mRNA levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app