Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Analyzing Supercomplexes of the Mitochondrial Electron Transport Chain with Native Electrophoresis, In-gel Assays, and Electroelution.

The mitochondrial electron transport chain (ETC) transduces the energy derived from the breakdown of various fuels into the bioenergetic currency of the cell, ATP. The ETC is composed of 5 massive protein complexes, which also assemble into supercomplexes called respirasomes (C-I, C-III, and C-IV) and synthasomes (C-V) that increase the efficiency of electron transport and ATP production. Various methods have been used for over 50 years to measure ETC function, but these protocols do not provide information on the assembly of individual complexes and supercomplexes. This protocol describes the technique of native gel polyacrylamide gel electrophoresis (PAGE), a method that was modified more than 20 years ago to study ETC complex structure. Native electrophoresis permits the separation of ETC complexes into their active forms, and these complexes can then be studied using immunoblotting, in-gel assays (IGA), and purification by electroelution. By combining the results of native gel PAGE with those of other mitochondrial assays, it is possible to obtain a completer picture of ETC activity, its dynamic assembly and disassembly, and how this regulates mitochondrial structure and function. This work will also discuss limitations of these techniques. In summary, the technique of native PAGE, followed by immunoblotting, IGA, and electroelution, presented below, is a powerful way to investigate the functionality and composition of mitochondrial ETC supercomplexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app