Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pharmacoinformatic Study on the Selective Inhibition of the Protozoan Dihydrofolate Reductase Enzymes.

Molecular Informatics 2017 November
Dihydrofolate reductase (DHFR) is an essential enzyme of the folate metabolic pathway in protozoa and it is a validated, potential drug target in many infectious diseases. Information about unique conserved residues of the DHFR enzyme is required to understand residual selectivity of the protozoan DHFR enzyme. The three dimensional crystal structures are not available for all the protozoan DHFR enzymes. Enzyme-substrate/inhibitor interaction information is required for the binding mode characterization in protozoan DHFR for selective inhibitor design. In this work, multiple sequence analysis was carried out in all the studied species. Homology models were built for protozoan DHFR enzymes, for which 3D structures are not available in PDB. The molecular docking and Prime-MMGBSA calculations of the natural substrate (dihydrofolate, DHF) and classical DHFR inhibitor (methotrexate, MTX) were performed in protozoan DHFR enzymes. Comparative sequence analysis showed that an overall sequence identity between the studied species ranging from 22.94 % (CfDHFR-BgDHFR) to 94.61 % (LdDHFR-LmDHFR). Interestingly, it was observed that most of the active site residues were conserved in all the cases and all the enzymes exhibit similar key binding interactions with DHF and MTX in molecular docking analysis, but there are a few key binding residues which differ in protozoan species that makes it suitable for target selectivity. This information can be used to design selective and potent protozoan DHFR enzyme inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app