Add like
Add dislike
Add to saved papers

In situ IR-spectroscopy as a tool for monitoring the radical hydrosilylation process on silicon nanocrystal surfaces.

Nanoscale 2017 June 23
Among a variety of SiNC functionalization methods, radical initiated grafting is very promising due to its straightforward nature and low propensity to form surface oligomers. In the present study, we employed in situ IR spectroscopy in combination with visible light transmittance measurements to investigate the radical induced grafting process on the well-defined SiNCs. Our findings support the proposed model: unfunctionalized hydride-terminated SiNCs form agglomerates in organic solvents, which break up during the grafting process. However, clearing of the dispersion is not a valid indicator for complete surface functionalization. Furthermore, radical-initiated grafting reactions in which azobisisobutyronitrile (AIBN) is the initiator are strongly influenced by external factors including initiator concentration, grafting temperature, as well as substrate steric demand. The monomer concentration was proven to have a low impact on the grafting process. Based on these new insights an underlying mechanism could be discussed, offering an unprecedented view on the functionalization of SiNC surfaces via radical initiated hydrosilylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app