Add like
Add dislike
Add to saved papers

How seaweeds release the excess energy from sunlight to surrounding sea water.

We report an atomistic insight into the mechanism regulating the energy released by a porphyra-334 molecule, the ubiquitous photosensitive component of marine algae, in a liquid water environment upon an electron excitation. To quantify this rapidly occurring process, we resort to the Fourier analysis of the mass-weighted auto-correlation function, providing evidence for a remarkable dynamic change in the number of hydrogen bonds among water molecules and between the porphyra-334 and its surrounding hydrating water. Hydrogen bonds between the porphyra-334 and close by water molecules can act directly and rather easily to promote an efficient transfer of the excess kinetic energies of the porphyra-334 to the surrounding solvating water molecules via an activation of the collective modes identified as hydrogen-bond stretching modes in liquid water which eventually results in a disruption of the hydrogen bond network. Since porphyra-334 is present in seaweeds, aquatic cyanobacteria (blue-green algae) and red algae, our findings allow addressing the question how algae in oceans or lakes, upon sunlight absorption, can release large amounts of energy into surrounding water without destabilizing neither their own nor the H2 O molecular structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app