Add like
Add dislike
Add to saved papers

Development and Validation of a New Near-Infrared Sensor to Measure Polyethylene Glycol (PEG) Concentration in Water.

Sensors 2017 June 11
A near-infrared absorption based laser sensor has been designed and validated for the real-time measurement of polyethylene glycol (PEG) concentration. The wavelength was selected after the determination of the absorption spectrum of deionised water and PEG solutions using a Varian Cary 6000i spectrophotometer, in order to limit the influence of PEG molecular mass on the absorption measurement. With this new sensor, the water is treated as the attenuating species and the addition of PEG in water reduces the absorbance of the medium. The concept was validated using three different PEG types (PEG 6,000, 20,000, and 35,000) and it was found that the results follow Beer Lambert's law. The influence of temperature was assessed by testing the PEG 20,000 at four different temperatures that could be encountered in a laboratory environment. The data show a slight temperature influence (increase of absorbance by 8% when the temperature rises from about 20 to about 29 degrees). Following the validation phase conducted ex situ, a prototype of an immersible sensor was built and calibrated for in situ measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app