Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Very Large-Sized Transition Metal Dichalcogenides Monolayers from Fast Exfoliation by Manual Shaking.

For two-dimensional transition metal dichalcogenides (TMD) materials, achieving large size with high quality to provide a basis for the next generation of electronic device geometries has been a long-term need. Here, we demonstrate that, by only manual shaking within several seconds, very large-sized TMD monolayers that cover a wide range of group IVB-VIB transition metal sulfides and selenides can be efficiently harvested from intercalated single-crystal counterparts. Taking TaS2 as examples, monolayers up to unprecedented size (>100 μm) are obtained while maintaining high crystalline quality and the phase structure of the starting materials. Furthermore, benefiting from the gentle manual shaking, we unraveled the atomic-level correlation between the intercalated lattice-strain effects and exfoliated nanosheets, and that strong tensile strain usually led to very large sizes. This work helps to deepen the understanding of exfoliation mechanism and provides a powerful tool for producing large-sized and high-quality TMD nanosheets appealing for further applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app