Add like
Add dislike
Add to saved papers

Characterization of Complex Polymer Self-Assemblies and Large Aggregates by Multidetector Thermal Field-Flow Fractionation.

Micelles prepared from amphiphilic block copolymers (ABCs) have found numerous applications in pharmaceutical, electronics, environmental, cosmetics, and hygiene industries. These micelles, whether in the pure or mixed micelle form, often exist as multiple morphologies (spherical, cylindrical, worm, or vesicular) in equilibrium with each other. However, none of the current column-based fractionation techniques or any microscopic technique are capable of a successful separation, identification, and quantitation of these complex self-assemblies with regards to morphology, size, molar mass, and chemical composition in one experiment. Multidetector thermal field-flow fractionation (ThFFF) is shown to be capable of separating and characterizing not only pure micelles but also mixed micelles prepared from polystyrene-poly(ethylene oxide) ABCs. In addition, multidetector ThFFF is demonstrated to be capable of successfully characterizing multiple micellar morphological evolutions (induced by the addition of an electrolyte) and thus showcasing the potential of this novel approach to monitor the formation of polymer self-assemblies with multiple and complex morphological distributions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app