Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structural Basis for Aryl Hydrocarbon Receptor-Mediated Gene Activation.

Structure 2017 July 6
The aryl hydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT) constitute a heterodimeric basic helix-loop-helix-Per-ARNT-Sim (bHLH-PAS) domain containing transcription factor with central functions in development and cellular homeostasis. AHR is activated by xenobiotics, notably dioxin, as well as by exogenous and endogenous metabolites. Modulation of AHR activity holds promise for the treatment of diseases featuring altered cellular homeostasis, such as cancer or autoimmune disorders. Here, we present the crystal structure of a heterodimeric AHR:ARNT complex containing the PAS A and bHLH domain bound to its target DNA. The structure provides insights into the DNA binding mode of AHR and elucidates how stable dimerization of AHR:ARNT is achieved through sophisticated domain interplay via three specific interfaces. Using mutational analyses, we prove the relevance of the observed interfaces for AHR-mediated gene activation. Thus, our work establishes the structural basis of AHR assembly and DNA interaction and provides a template for targeted drug design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app