Add like
Add dislike
Add to saved papers

The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana.

MYB-type proteins are known to participate in many stress responses, although their role in legumes is still less clear. Here, the isolation and characterization of MtMYBS1, an R2R3 MYB gene isolated from the model legume Medicago truncatula, is described. MtMYBS1 transcription was inducible by NaCl, polyethylene glycol or abscisic acid (ABA). When tested in yeast, its product was shown to have transactivational activity. The constitutive expression of MtMYBS1 in Arabidopsis thaliana seedlings mitigated the restriction on root growth imposed by either salinity or osmotic stress and raised their sensitivity to ABA. It also resulted in the plants being able to overcome several growth constraints and promoted activity in both the ABA-dependent and -independent stress-responsive pathways. In particular, it enhanced the transcription of P5CS, a gene which encodes a component of proline synthesis. MtMYBS1 may prove to be a useful gene for manipulating the salinity tolerance of legumes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app