Add like
Add dislike
Add to saved papers

Serum metabolomic response to exercise training in spontaneously hypertensive rats.

Chronic aerobic exercise training exhibits blood pressure protective effects, but the mechanism in metabolic level remains largely unclear. This study aims to investigate the effect of exercise training from serum metabolic profiles on the development of hypertension in spontaneously hypertensive rats (SHRs). Exercise training was performed, and the serum metabolites were measured by integrating gas chromatography-mass spectrometer and correlation-based network analysis. After a period of 6 weeks of chronic aerobic exercise training, systolic blood pressure was significant lower in the exercise training group (SHR + EX) rats than the control group (SHR). Principal component analysis indicated a clearly separation of metabolomic profiles between SHR + EX and SHR. Nineteen of 63 metabolites in serum were identified (P < .05, variable importance in projections > 1, false discovery rate < 0.1), including fatty acids, amino acids, and others. Lower levels of six fatty acids were observed in SHR + EX. Besides, pathway analysis indicated a significant alteration of fatty acid metabolism. The correlation-based (Pearson correlation coefficient > 0.83) network of serum metabolites revealed a decreased correlation linkage of SHR + EX than SHR rats. Higher activities of hexokinase, citrate synthase, aspartate aminotransferase, and alanine aminotransferase were detected in liver, left ventricle, and skeletal muscle of SHR + EX groups. In summary, these findings provided essential biochemistry information about the metabolic alteration to exercise training in SHR, which may in part explain the protective effect of exercise in hypertensive individuals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app