JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells.

Stem Cell Reports 2017 July 12
The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC)-derived hepatocytes (dHeps) remains elusive. In this study, we find that hepatogenic differentiation (HD) of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs). DNMTs are regulated by transforming growth factor β1 (TGFβ1), which in turn controls hepatogenic differentiation and de-differentiation. In addition, a stepwise reduction in TGFβ1 concentrations in culture media increases DNMT1 and decreases DNMT3 in primary hepatocytes (Heps) and confers Heps with multi-differentiation potentials similarly to MSCs. Hepatic lineage reversibility of MSCs and lineage conversion of Heps are regulated by DNMTs in response to TGFβ1. This previously unrecognized TGFβ1-DNMTs-MSC-HD axis may further increase the understanding the normal and pathological processes in the liver, as well as functions of MSCs after transplantation to treat liver diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app