JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Coupled Caspase and N-End Rule Ligase Activities Allow Recognition and Degradation of Pluripotency Factor LIN-28 during Non-Apoptotic Development.

Developmental Cell 2017 June 20
Recent findings suggest that components of the classical cell death machinery also have important non-cell-death (non-apoptotic) functions in flies, nematodes, and mammals. However, the mechanisms for non-canonical caspase substrate recognition and proteolysis, and the direct roles for caspases in gene expression regulation, remain largely unclear. Here we report that CED-3 caspase and the Arg/N-end rule pathway cooperate to inactivate the LIN-28 pluripotency factor in seam cells, a stem-like cell type in Caenorhabditis elegans, thereby ensuring proper temporal cell fate patterning. Importantly, the caspase and the E3 ligase execute this function in a non-additive manner. We show that CED-3 caspase and the E3 ubiquitin ligase UBR-1 form a complex that couples their in vivo activities, allowing for recognition and rapid degradation of LIN-28 and thus facilitating a switch in developmental programs. The interdependence of these proteolytic activities provides a paradigm for non-apoptotic caspase-mediated protein inactivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app