Journal Article
Review
Add like
Add dislike
Add to saved papers

Glycolipids: Essential regulator of neuro-inflammation, metabolism and gliomagenesis.

Gene knockout mice of glycosyltransferases have clearly showed roles of their products in the bodies, while there are examples where phenotype of knockout was much less severe than expected probably due to functional redundancy. The most striking novel finding obtained from ganglioside-deficient mice was that progressive inflammatory reaction took place, leading to neurodegeneration. In particular, dysfunction of complement-regulatory proteins due to deteriorated architecture of lipid rafts seemed to be essential mechanisms for the inflammation. Furthermore, roles of gangliosides in neurons were demonstrated by neuron-specific transgenic of B4galnt1 with genetic background of B4galnt1 deficiency. From study of gene knockout mice of St8sia1, new roles of b-series gangliosides in leptin secretion from adipocytes, and roles of a-series gangliosides in leptin receptor, ObR in hypothalamus were demonstrated, leading to apparent intact balance of energy. Essential roles of b-series gangliosides in malignant properties of gliomas were also shown, suggesting their roles in the regulation of inflammation and proliferation in nervous tissues. How to apply these findings for the control of newly discovered patients with ganglioside deficiency remains to be investigated. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app