Add like
Add dislike
Add to saved papers

TGF-β1-silenced leukemia cell-derived exosomes target dendritic cells to induce potent anti-leukemic immunity in a mouse model.

Tumor-derived exosomes (TEX) can induce a specific antitumor immune response and have been developed as a promising tumor vaccine. Despite promising preclinical data, TEX exhibit relatively low efficacy and limited clinical benefit in clinical trials. In the present study, we investigated whether exosomes from the TGF-β1 silenced L1210 cells (LEXTGF-β1si ) can enhance the efficacy of DC-based vaccines. We silenced TGF-β1 in L1210 cells with a lentiviral shRNA vector and prepared the LEXTGF-β1si . It was shown that LEXTGF-β1si can significantly decrease TGF-β1 expression of dendritic cells (DC) and effectively promote their maturation and immune function. In addition, DC pulsed with LEXTGF-β1si (DCLEX-TGF-β1si ) more effectively promoted CD4+ T cell proliferation in vitro and Th1 cytokine secretion and induced tumor-specific CTL response. This response was higher in potency compared to that noted by the other two formulations. Moreover, DCLEX-TGF-β1si inhibited tumor growth more efficiently than other formulations did as the preventive or therapeutic tumor vaccine. Accordingly, these findings revealed that DCLEX-TGF-β1si induced a more potent antigen-specific anti-leukemic immunity than DC pulsed with exosomes from non-manipulated L1210 cells. This indicated that the targeting of DC by LEXTGF-β1si may be used as a promising approach for leukemia immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app