Add like
Add dislike
Add to saved papers

Effects of humic acids from landfill leachate on plants: An integrated approach using chemical, biochemical and cytogenetic analysis.

Chemosphere 2017 October
Biological process treatment of landfill leachate produces a significant amount of sludge, characterized by high levels of organic matter from which humic acids are known to activate several enzymes of energy metabolism, stimulating plant growth. This study aimed to characterize humic acids extracted from landfill sludge and assess the effects on plants exposed to different concentrations (0.5, 1, 2 and 4 mM C L(-1)) by chemical and biological analysis, to elucidate the influence of such organic material and minimize potential risks of using sludge in natura. Landfill humic acids showed high carbon and nitrogen levels, which may represent an important source of nutrients for plants. Biochemical analysis demonstrated an increase of enzyme activity, especially H(+)-ATPase in 2 mM C L(-1) landfill humic acid. Additionally, cytogenetic alterations were observed in meristematic and F1 cells, through nuclear abnormalities and micronuclei. Multivariate statistical analysis provided integration of physical, chemical and biological data. Despite all the nutritional benefits of humic acids and their activation of plant antioxidant systems, the observed biological effects showed concerning levels of mutagenicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app