Add like
Add dislike
Add to saved papers

In vitro studies on cytotoxicity of delaminated Ti 3 C 2 MXene.

MXenes are a novel family of 2D materials, the biological activity of which has been largely unexplored. The present study, for the first time, shows some aspects of the in vitro toxicity of 2D sheets of Ti3 C2 MXene. The Ti3 AlC2 MAX phase was used in an expansion and delamination process to obtain Ti3 C2 material in the form of 2D sheets. The obtained 2D material was characterized using SEM, TEM, DLS, XPS, and zeta potential. The biological activity of the MXene was determined on two normal (MRC-5 and HaCaT) and two cancerous (A549 and A375) cell lines. The cytotoxicity results indicated that the observed toxic effects were higher against cancerous cells compared to normal ones. The mechanisms of potential toxicity were also elucidated. It was shown that MXene may affect the occurrence of oxidative stress and, in consequence, the generation of reactive oxygen species (ROS). The results of the present study provide the principal knowledge to date regarding the biological activity of the MXenes; the lack of such knowledge is the major obstacle on the MXenes' road to further research and development on their applications in bioscience and biotechnology, e.g. as drug-delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app