Add like
Add dislike
Add to saved papers

Quantitative susceptibility mapping (QSM) and R 2 * in the human brain at 3T: Evaluation of intra-scanner repeatability.

Quantitative susceptibility mapping (QSM) and the effective transverse relaxation rate (R2 *) can be used to monitor iron and myelin content in brain tissue, which are both subject to changes in many neurological diseases but also during healthy aging. In this study, we quantitatively assessed the repeatability of QSM and R2 * by applying four independent scans in eight young healthy, female subjects on a 3T MRI scanner. Since QSM does not yield absolute values for bulk magnetic susceptibilities, we additionally investigated the influence of the choice of a reference brain region for susceptibility by computing susceptibility differences with respect to five different brain structures (whole brain, frontal white matter (fWM), internal capsule (IC), cerebrospinal fluid (CSF) in the lateral ventricle, cortical gray matter (cGM)). The intra-class correlation coefficient (ICC), variance ratio (VR) and repeatability coefficient (RC) were used to evaluate the repeatability of the calculated susceptibility differences and the R2 * values in six different subcortical brain structures. Linear regression was used to analyze the correlation between susceptibility differences and R2 *. We found that the susceptibility differences with respect to each investigated reference region (0.868≤mean ICC≤0.914) and the R2 * values (mean ICC=0.923) were highly repeatable across the four times repeated scans. With consistently higher ICC, higher VR and lower RC, whole brain and cGM appeared to be the two most suitable reference regions for QSM with respect to repeatability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app