Add like
Add dislike
Add to saved papers

MicroRNA-630 Suppresses Epithelial-to-Mesenchymal Transition by Regulating FoxM1 in Gastric Cancer Cells.

In the present study, we investigated the functional role of microRNA (miR)-630 in epithelial-to-mesenchymal transition (EMT) of gastric cancer (GC) cells, as well as the regulatory mechanism. Cells of human GC cell line SGC 7901 were transfected with miR-630 mimic or miR-630 inhibitor. The transfection efficiency was confirmed by qRT-PCR. Cell migration and invasion were determined by Transwell assay. Protein expression of E-cadherin, vimentin, and Forkhead box protein M1 (FoxM1) was tested by Western blot. Moreover, the expression of FoxM1 was elevated or suppressed, and then the effects of miR-630 abnormal expression on EMT and properties of migration and invasion were examined again, as well as protein expression of Ras/phosphoinositide 3-kinase (PI3K)/AKT related factors. The results showed that (i) the EMT and properties of migration and invasion were statistically decreased by overexpression of miR-630 compared to the control group but markedly increased by suppression of miR-630. However, (ii) abnormal expression of FoxM1 reversed these effects in GC cells. Moreover, (iii) expression of GTP-Rac1, p-PI3K, and p-AKT was decreased by miR-630 overexpression but increased by FoxM1 overexpression. (iv) The decreased levels of GTP-Rac1, p-PI3K, and p-AKT induced by miR-630 overexpression were dramatically elevated by simultaneous overexpression of FoxM1. In conclusion, our results suggest that miR-630 might be a tumor suppressor in GC cells. MiR-630 suppresses EMT by regulating FoxM1 in GC cells, supposedly via inactivation of the Ras/PI3K/AKT pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app