Add like
Add dislike
Add to saved papers

A novel versatile precursor suitable for 18 F-radiolabeling via "click chemistry".

As an effort to improve 18 F-radiolabeling of biomolecules in method robustness and versatility, we report the synthesis and radiolabeling of a new azido precursor potentially useful for the so-called "click reaction," in particular the ligand-free version of the copper(I)-catalyzed alkyne-azide cycloaddition. The new azido precursor may help to overcome problems sometimes exhibited by most of the currently used analogues, as it is safe to handle and it displays long-term chemical stability, thus facilitating the development of new radiolabeling procedures. Moreover, the formed 18 F-labeled 1,2,3-triazole is potentially metabolically stable and could enhance the in vivo circulation time. The above azido precursor was successfully radiolabeled with 18 F, with 51% radiochemical yield (nondecay-corrected). As a proof of concept, the 18 F-labeled azide was then tested with a suitable alkyne functionalized aminoacid (l-propargylglycine), showing 94% of conversion, and a final radiochemical yield of 27% (>99% radiochemical purity), nondecay-corrected, with a total preparation time of 104 minutes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app