JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-Throughput Single-Cell Analysis of B Cell Receptor Usage among Autoantigen-Specific Plasma Cells in Celiac Disease.

Characterization of Ag-specific BCR repertoires is essential for understanding disease mechanisms involving humoral immunity. This is optimally done by interrogation of paired H chain V region (VH ) and L chain V region (VL ) sequences of individual and Ag-specific B cells. By applying single-cell high-throughput sequencing on gut lesion plasma cells (PCs), we have analyzed the transglutaminase 2 (TG2)-specific VH :VL autoantibody repertoire of celiac disease (CD) patients. Autoantibodies against TG2 are a hallmark of CD, and anti-TG2 IgA-producing gut PCs accumulate in patients upon gluten ingestion. Altogether, we analyzed paired VH and VL sequences of 1482 TG2-specific and 1421 non-TG2-specific gut PCs from 10 CD patients. Among TG2-specific PCs, we observed a striking bias in IGHV and IGKV/IGLV gene usage, as well as pairing preferences with a particular presence of the IGHV5-51:IGKV1-5 pair. Selective and biased VH :VL pairing was particularly evident among expanded clones. In general, TG2-specific PCs had lower numbers of mutations both in VH and VL genes than in non-TG2-specific PCs. TG2-specific PCs using IGHV5-51 had particularly few mutations. Importantly, VL segments paired with IGHV5-51 displayed proportionally low mutation numbers, suggesting that the low mutation rate among IGHV5-51 PCs is dictated by the BCR specificity. Finally, we observed selective amino acid changes in VH and VL and striking CDR3 length and J segment selection among TG2-specific IGHV5-51:IGKV1-5 pairs. Hence this study reveals features of a disease- and Ag-specific autoantibody repertoire with preferred VH :VL usage and pairings, limited mutations, clonal dominance, and selection of particular CDR3 sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app