Add like
Add dislike
Add to saved papers

MST-GEN: An Efficient Parameter Selection Method for One-Class Extreme Learning Machine.

One-class classification (OCC) models a set of target data from one class to detect outliers. OCC approaches like one-class support vector machine (OCSVM) and support vector data description (SVDD) have wide practical applications. Recently, one-class extreme learning machine (OCELM), which inherits the fast learning speed of original ELM and achieves equivalent or higher data description performance than OCSVM and SVDD, is proposed as a promising alternative. However, OCELM faces the same thorny parameter selection problem as OCSVM and SVDD. It significantly affects the performance of OCELM and remains under-explored. This paper proposes minimal spanning tree (MST)-GEN, an automatic way to select proper parameters for OCELM. Specifically, we first build a n -round MST to model the structure and distribution of the given target set. With information from n -round MST, a controllable number of pseudo outliers are generated by edge pattern detection and a novel "repelling" process, which readily overcomes two fundamental problems in previous outlier generation methods: where and how many pseudo outliers should be generated. Unlike previous methods that only generate pseudo outliers, we further exploit n -round MST to generate pseudo target data, so as to avoid the time-consuming cross-validation process and accelerate the parameter selection. Extensive experiments on various datasets suggest that the proposed method can select parameters for OCELM in a highly efficient and accurate manner when compared with existing methods, which enables OCELM to achieve better OCC performance in OCC applications. Furthermore, our experiments show that MST-GEN can also be favorably applied to other prevalent OCC methods like OCSVM and SVDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app