Add like
Add dislike
Add to saved papers

Multimodal Similarity Gaussian Process Latent Variable Model.

Data from real applications involve multiple modalities representing content with the same semantics from complementary aspects. However, relations among heterogeneous modalities are simply treated as observation-to-fit by existing work, and the parameterized modality specific mapping functions lack flexibility in directly adapting to the content divergence and semantic complicacy in multimodal data. In this paper, we build our work based on the Gaussian process latent variable model (GPLVM) to learn the non-parametric mapping functions and transform heterogeneous modalities into a shared latent space. We propose multimodal Similarity Gaussian Process latent variable model (m-SimGP), which learns the mapping functions between the intra-modal similarities and latent representation. We further propose multimodal distance-preserved similarity GPLVM (m-DSimGP) to preserve the intra-modal global similarity structure, and multimodal regularized similarity GPLVM (m-RSimGP) by encouraging similar/dissimilar points to be similar/dissimilar in the latent space. We propose m-DRSimGP, which combines the distance preservation in m-DSimGP and semantic preservation in m-RSimGP to learn the latent representation. The overall objective functions of the four models are solved by simple and scalable gradient decent techniques. They can be applied to various tasks to discover the nonlinear correlations and to obtain the comparable low-dimensional representation for heterogeneous modalities. On five widely used real-world data sets, our approaches outperform existing models on cross-modal content retrieval and multimodal classification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app