Add like
Add dislike
Add to saved papers

Photodynamic process induced by chloro-aluminum phthalocyanine nanoemulsion in glioblastoma.

BACKGROUND: Glioblastoma multiforme (GBM) is a tumor characterized by rapid cell proliferation and migration. GBM constitutes the most aggressive and deadly type of brain tumor and is classified into several subtypes that show high resistance to conventional therapies. There are currently no curative treatments for malignant glioma despite the numerous advances in surgical techniques, radiotherapy, and chemotherapy. Therefore, alternative approaches are required to improve GBM treatment.

METHODS: Our study proposes the use of photodynamic therapy (PDT) for GBM treatment, which uses chloro-aluminum phthalocyanine (AlClPc) encapsulated in a new drug delivery system (DDS) and designed as a nanoemulsion (AlClPc/NE). The optimal dark non-cytotoxic AlClPc/NE concentration for the U87 MG glioma cell model and the most suitable laser light intensity for irradiation were determined. Experimental U87 MG cancer cells were analyzed via MTT cell viability assay. Cellular localization of AlClPc, morphological changes, and cell death via the necrotic and apoptotic pathways were also evaluated.

RESULTS: AlClPc remained in the cytoplasmic region at 24h after administration. Additionally, treatment with 1.0μmol/L AlClPc under light irradiation at doses lower than 140mJ/cm resulted in morphological changes with 50±6% cell death (p<0.05). Moreover, 20±2% of U87 MG cells underwent cell death via the necrotic pathway. Measurement of Caspase-9 and -3 activities also suggested that cells underwent apoptosis. Taken together, these results indicate that AlClPc/NE-PDT can be used in the treatment of glioblastoma by inducing necrotic and apoptotic cell death.

CONCLUSIONS: Our findings suggest that AlClPc/NE-PDT induces cell death in U87 MG cells in a dose-dependent manner and could thus serve as an effective adjuvant treatment for malignant glioma. AlClPc/NE-PDT utilizes a low dose of visible light and can be used in combination with other classic GBM treatment approaches, such as a combination of chemotherapy and surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app