Add like
Add dislike
Add to saved papers

Pulmonary surfactant dysfunction in pediatric cystic fibrosis: Mechanisms and reversal with a lipid-sequestering drug.

BACKGROUND: Airway surfactant is impaired in cystic fibrosis (CF) and associated with declines in pulmonary function. We hypothesized that surfactant dysfunction in CF is due to an excess of cholesterol with an interaction with oxidation.

METHODS: Surfactant was extracted from bronchial lavage fluid from children with CF and surface tension, and lipid content, inflammatory cells and microbial flora were determined. Dysfunctional surfactant samples were re-tested with a lipid-sequestering agent, methyl-β-cyclodextrin (MβCD).

RESULTS: CF surfactant samples were unable to sustain a normal low surface tension. MβCD restored surfactant function in a majority of samples.Mechanistic studies showed that the dysfunction was due to a combination of elevated cholesterol and an interaction with oxidized phospholipids and their pro-inflammatory hydrolysis products.

CONCLUSION: We confirm that CF patients have impaired airway surfactant function which could be restored with MβCD. These findings have implications for improving lung function and mitigating inflammation in patients with CF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app