Add like
Add dislike
Add to saved papers

Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography.

The work presented here explores the grafting of molecularly imprinted nanoparticles (MIN) on silica beads for the development of new chiral stationary phases (CSP). Both solid-phase imprinting and precipitation polymerisation were tested for MIN synthesis though the latter approach was the only one that provided efficient chiral selectors. MIN particles were prepared by iniferter polymerisation initiated by UV radiation, using itaconic acid as functional monomer and ethylene dimethacrylate as cross-linker. This resulted in particles with an average size of 249.0±4.0nm which were covalently immobilised onto chromatographic silica beads. The resultant CSP based on the composite silica beads-MIN was capable of resolving the racemate of the antidepressant drug citalopram and also separating its major metabolites by liquid chromatography, with better efficiency and peak symmetry than other MIP based CSP. The methodology presented here allowed for the quantification of the pharmacologically active enantiomer (+)-(S)-citalopram (SCIT) and its main metabolites (+)-(S)-desmethylcitalopram (SDCIT) and (+)-(S)-didesmethylcitalopram (SDDCIT) in urine, registering mean recoveries that ranged from 91.5 to 103.7% with RSD values that were below 10% in all tested concentration levels (0.1, 0.75 and 5μgmL(-1)), which confirmed method suitability for the intended application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app