Add like
Add dislike
Add to saved papers

CB-1R and GLP-1R gene expressions and oxidative stress in the liver of diabetic rats treated with sitagliptin.

BACKGROUND: Type 2 diabetes is a major health problem affecting millions of people. Controlled eating and regular physical activity are important for the management of type 2 diabetes. Dipeptidyl peptidase-4 enzyme (DPP-4) inhibitor sitagliptin is a potent agent for the treatment of type-2 diabetes. The aim of this study was to examine the effects of sitagliptin on the liver of rats with streptozotocin (STZ)-induced diabetes, in terms of (i) the expression levels of the cannabinoid 1 receptor (CB-1R) and glucagon-like peptide 1 receptor (GLP-1R), (ii) alterations in the number and localization of these peptides, and (iii) changes in histological and oxidative damage.

METHODS: Thirty-two neonatal (two-day-old) rats, which were divided into four groups, were treated with saline (control), sitagliptin (control; 1.5mg/kg/day for 15 days starting from day 5 of the experimental period), STZ (diabetes; 100mg/kg single dose), STZ+sitagliptin (diabetes+sitagliptin). After 20 days, hepatic tissues were obtained from rats.

RESULTS: The expressions of GLP-1R and CB-1R mRNA increased approximately 1.89- and 2.94-fold, respectively, in the diabetes+sitagliptin group as compared to the diabetic group. Additionally the number of GLP-1R immunopositive cells decreased and CB-1R immunopositive cells increased in comparison to the diabetic group; however, this was not statistically significant. Glutathione levels increased, but malondialdehyde and protein carbonyl levels decreased in the diabetes+sitagliptin group more than the diabetic group.

CONCLUSION: Our findings indicate that sitagliptin treatment regulates GLP-1R and CB-1R gene expressions, which are associated with appetite regulation in diabetic rat, and may decrease oxidative stress and liver tissue damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app