Add like
Add dislike
Add to saved papers

Coupling distributed stormwater collection and managed aquifer recharge: Field application and implications.

Groundwater is increasingly important for satisfying California's growing fresh water demand. Strategies like managed aquifer recharge (MAR) can improve groundwater supplies, mitigating the negative consequences of persistent groundwater overdraft. Distributed stormwater collection (DSC)-MAR projects collect and infiltrate excess hillslope runoff before it reaches a stream, focusing on 40-400 ha drainage areas (100-1000 ac). We present results from six years of DSC-MAR operation-including high resolution analyses of precipitation, runoff generation, infiltration, and sediment transport-and discuss their implications for regional resource management. This project generated significant water supply benefit over six years, including an extended regional drought, collecting and infiltrating 5.3 × 105  m3 (426 ac-ft). Runoff generation was highly sensitive to sub-daily storm frequency, duration, and intensity, and a single intense storm often accounted for a large fraction of annual runoff. Observed infiltration rates varied widely in space and time. The basin-average infiltration rate during storms was 1-3 m/d, with point-specific rates up to 8 m/d. Despite efforts to limit sediment load, 8.2 × 105  kg of fine-grained sediment accumulated in the infiltration basin over three years, likely reducing soil infiltration capacity. Periodic removal of accumulated material, better source control, and/or improved sediment detention could mitigate this effect in the future. Regional soil analyses can maximize DSC-MAR benefits by identifying high-infiltration capacity features and characterizing upland sediment sources. A regional network of DSC-MAR projects could increase groundwater supplies while contributing to improved groundwater quality, flood mitigation, and stakeholder engagement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app