Add like
Add dislike
Add to saved papers

Exposure to sub-inhibitory concentrations of gentamicin, ciprofloxacin and cefotaxime induces multidrug resistance and reactive oxygen species generation in meticillin-sensitive Staphylococcus aureus.

PURPOSE: The role of antibiotics below their MIC in the development of bacterial drug resistance is becoming increasingly important. We investigated the effect of sub-MICs of bactericidal antibiotics on the susceptibility pattern of Staphylococcus aureus and evaluated the role of free radicals.

METHODOLOGY: A total of 12 S. aureus strains were recovered from pus samples and their antibiograms determined. The test isolates were treated with sub-MIC levels of tetracycline, gentamicin, ciprofloxacin and cefotaxime. Alterations in their respective breakpoints were observed along with measurements of free radical generation by nitro blue tetrazolium test.Results/Key findings. Gentamicin, ciprofloxacin and cefotaxime exposure significantly altered the breakpoints of exposed isolates against several tested antibiotics and higher levels of free radicals were generated after antibiotic exposure.

CONCLUSIONS: Our study demonstrates that sub-MIC levels of antimicrobials can lead to resistance and cross-resistance across several classes of antibiotics in wild strains of S. aureus, possibly by free radical production. The molecular mechanisms behind the acquisition of drug resistance at low antibiotic concentrations and the specific target genes of reactive oxygen speciesneed to be explored further.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app