Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

K + -Responsive Block Copolymer Micelles for Targeted Intracellular Drug Delivery.

In this work, a novel type of block copolymer micelles with K+ -responsive characteristics for targeted intracellular drug delivery is developed. The proposed smart micelles are prepared by self-assembly of poly(ethylene glycol)-b-poly(N-isopropylacry-lamide-co-benzo-18-crown-6-acrylamide) (PEG-b-P(NIPAM-co-B18C6Am)) block copolymers. Prednisolone acetate (PA) is successfully loaded into the micelles as the model drug, with loading content of 4.7 wt%. The PA-loaded micelles display a significantly boosted drug release in simulated intracellular fluid with a high K+ concentration of 150 × 10-3 m, as compared with that in simulated extracellular fluid. Moreover, the in vitro cell experiments indicate that the fluorescent molecules encapsulated in the micelles can be delivered and specifically released inside the HSC-T6 and HepG2 cells responding to the increase of K+ concentration in intracellular compartments, which confirms the successful endocytosis and efficient K+ -induced intracellular release. Such K+ -responsive block copolymer micelles are highly potential as new-generation of smart nanocarriers for targeted intracellular delivery of drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app