Add like
Add dislike
Add to saved papers

An anther-specific gene PhGRP is regulated by PhMYC2 and causes male sterility when overexpressed in petunia anthers.

Plant Cell Reports 2017 September
KEY MESSAGE: An anther-specific GRP gene, regulated by PhMYC2 , causes a significant reduction of male fertility when overexpressed in petunia, and its promoter is efficient in genetic engineering of male-sterile lines. Glycine-rich proteins (GRPs) play important roles in plant anther development; however, the underlying mechanisms and related regulatory networks are poorly understood. In this study, a novel glycine-rich family gene designated as PhGRP was isolated from Petunia hybrida 'Fantasy Red'. The qRT-PCR analysis showed that it expressed specifically in anthers, and its expression peaked earlier than those well-known tapetum-specific genes, such as TA29, and several genes with the classic cis-regulatory element 'anther-box' in petunia during its anther development. The male fertility was significantly reduced in PhGRP overexpression lines, due to the abnormal formation of pollen wall. The PhGRP promoter (pPhGRP) could drive the GUS genes expressing specifically in the anthers of the transgenic Arabidopsis plants, indicating that the anther-specific characteristic of this promoter was conserved. In addition, when pPhGRP was used to drive the expression of BARNASE, complete male-sterile petunia lines were created without changes in vegetative organs and floral parts other than anthers. Finally, when pPhGRP was used as the bait to screen a yeast-one-hybrid (Y1H) library, a transcription factor (PhMYC2) belonging to the bHLH family was successfully selected, and the binding between pPhGRP and PhMYC2 was validated both by Y1H and dual-luciferase reporter assay. Overall, these results suggest that PhGRP, which is a male fertility-related gene that expresses specifically in anthers, is regulated by PhMYC2 and whose promoter can be used as an effective tool in the creation of male-sterile lines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app