Add like
Add dislike
Add to saved papers

Polyanhydride micelles with diverse morphologies for shape-regulated cellular internalization and blood circulation.

Biodegradable amphiphilic poly (ethylene glycol) (PEG) based ether-anhydride terpolymer, consisting of PEG, 1, 3-bis (p-carboxyphenoxy) propane (CPP) and sebacic acid (SA), namely PEG-CPP-SA terpolymer, was employed to self-assemble into micelles by adding water into a solution of the terpolymer in tetrahydrofuran (THF). The shape of polyanhydride micelles can be regulated by simply adjusting the water addition rate, where spherical, rod-like and comb-like micelles can obtained under water addition rate of 20, 3 and 1 ml/h, respectively. The effect of micellar morphologies on the cellular internalization and intracellular distribution were characterized qualitatively with cervical cancer cells (HeLa cells) and hepatoma cells (HepG2 cells) by fluorescence microscopy, confocal laser scanning microscopy (CLSM), flow cytometry (FCM) and transmission electron microscopy (TEM). The results reveal that the cellular uptake of micelles are micelle-shape-dependent (rod-like micelles may possess the highest cellular internalization rate) and cell-type-specific. Each endocytic pathway can make a contribution to this process in different degree. Moreover, blood circulation experiments of these micelles were carried out, demonstrating that comb-like micelles have a relatively longer blood circulating feature, which may due to its irregular shape help to increase the sensitivity to fluid forces and allows them to tumble and align with the blood flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app