Add like
Add dislike
Add to saved papers

Electro-Forming and Electro-Breaking of Nanoscale Ag Filaments for Conductive-Bridging Random-Access Memory Cell using Ag-Doped Polymer-Electrolyte between Pt Electrodes.

Scientific Reports 2017 June 9
Ag-doped polymer (polyethylene oxide: PEO) conductive-bridging-random-access-memory (CBRAM) cell using inert Pt electrodes is a potential electro-forming free CBRAM cells in which electro-forming and electro-breaking of nanoscale (16~22-nm in diameter) conical or cylindrical Ag filaments occurs after a set or reset bias is applied. The dependency of the morphologies of the Ag filaments in the PEO polymer electrolyte indicates that the electro-formed Ag filaments bridging the Pt cathode and anode are generated by Ag+ ions drifting in the PEO polymer electrolyte toward the Pt anode and that Ag dendrites grow via a reduction process from the Pt anode, whereas electro-breaking of Ag filaments occurs through the oxidation of Ag atoms in the secondary dendrites and the drift of Ag(+) ions toward the Pt cathode. The Ag doping concentration in the PEO polymer electrolyte determines the bipolar switching characteristics; i.e., the set voltage slightly decreases, while the reset voltage and memory margin greatly increases with the Ag doping concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app